If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+9t-500=0
a = 4.9; b = 9; c = -500;
Δ = b2-4ac
Δ = 92-4·4.9·(-500)
Δ = 9881
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{9881}}{2*4.9}=\frac{-9-\sqrt{9881}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{9881}}{2*4.9}=\frac{-9+\sqrt{9881}}{9.8} $
| 9x+1+5x-3=180 | | 16.93+9x=17.02 | | 3^2+30=r^2 | | 23=-5+3(z-7) | | 3^2+(-30)=r^2 | | -1.9f=96.95 | | -7(5f+9)=33+8f | | 4(u-7)-6u=-12 | | 10^2*3^2=s^2 | | 48=-1.9f-(-48.95) | | 4.9t^2+3t-950=0 | | 32 x2−21 x−43 =0 | | -8x+19x=25+8 | | -28=2u-48 | | 18^2+18^2=x^2 | | 2u3u=45 | | 7/4=n/2 | | 30/0.5=y/0.52 | | 35=5x-8 | | x-0.15x=66 | | (10x-2)=7x | | 84=6x-6 | | 1/6x-19=1/2 | | a^2+8^2=15^2 | | 1/6x-19=1/2(8)*4 | | -22-9c=2c | | a^2+8=14 | | 3(2m+4)=36 | | 25=3v-7v | | -1.4m=2.8 | | 6084=c^2 | | 3b+4=4b-5 |